

Nuclear Power in Startup Mode: How can Startups contribute to new reactor design?

Antoine Gerschenfeld

STELLARIA

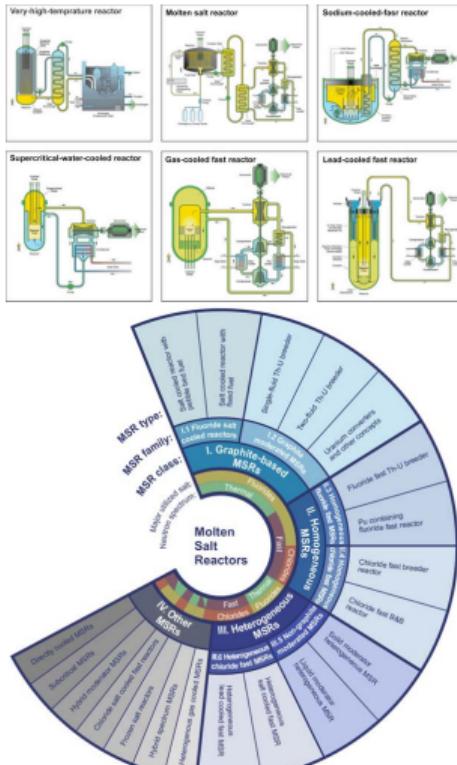
24/10/2024

Me

Introduction

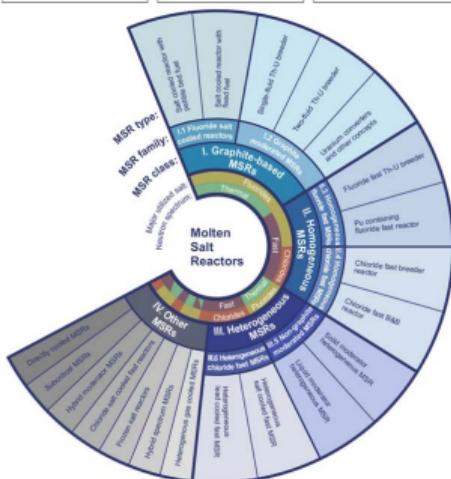
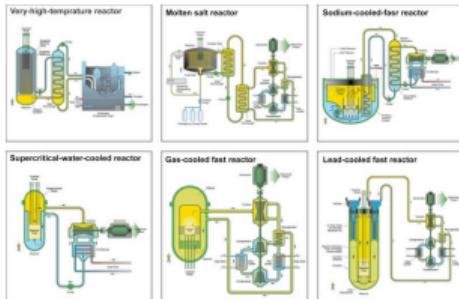
- training + PhD in **physics** (ENS Paris, 2005-2013)
- research engineer in **thermalhydraulics** (CEA, 2013-2024) :
 - **ASTRID** (Sodium Fast Reactor, 2013-2019)
 - **NUWARD** (Small Modular Reactor, 2020-2024)
 - **ARAMIS/Stellaria** (Molten Salt Reactors, 2020-)
- Associate professor (PCC) at **X** (2019-)
- Member of the **Framatome** Scientific Council (2019-)
- Deputy CTO of **Stellaria** (2024 -)

Disclaimer


- this presentation only contains information from **public sources**...
- ...and only reflects my **personal opinion**!
- no fusion, sorry :-(

Introduction

Contents

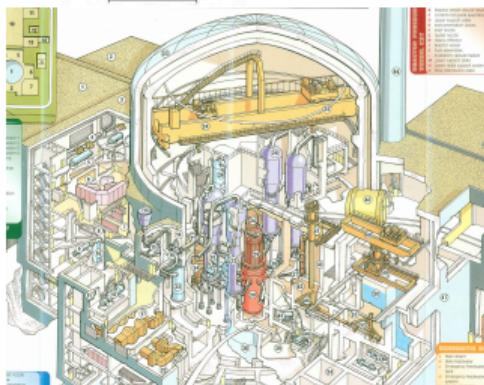
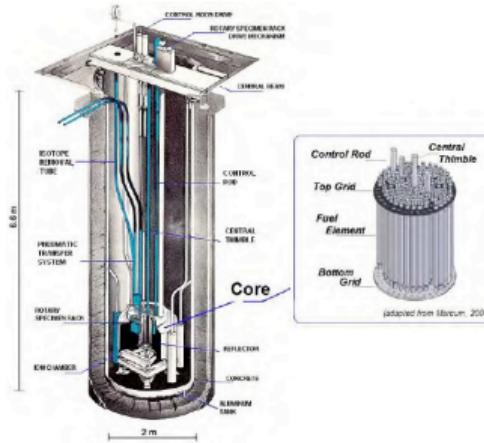


- some **features** (“the rules”) of **new reactor** development :
 - **design space** and **tradeoffs**
 - “**design-to-safety**”
 - **project phases** and their **time/cost**
- how this has played out in the **past** in France :
 - **recent** projects
 - **older** projects (and some current ones)
- how **startups** can change that... **potentially** :
 - **their advantages** and **limitations**
 - what kind of projects can they contribute to?
 - and how far can they go?

→ with some feedback from the **US** + the current **French** situation

Reactor development

- the design space for a nuclear (fission) reactor is **huge**
→ only two **basic** requirements :
 - maintain the **chain reaction** in the core :
fissile ($^{233}/^{235}$ U/Pu) $\xrightarrow{1 \text{ neutron} / 2.\text{xx}}$ fissile
 - remove the **heat** during normal operation...
... and in all possible **accidents** (decay heat)
 - avoid **radioactive releases** in all cases
- but then the **branches** start:
 - **slow down** the neutrons before the next fission?
→ if so, with **what**?
 - **solid** or **liquid** fuel?
→ if solid, what **coolant**?
 - **materials**? can they withstand the **neutrons**?
 - use naturally-occurring 235 U or **synthetize** 233 U/Pu
→ **isogeneration** / **breeding**?

Reactor development



Phase space

- Energy-producing reactors are currently classified in generations :
 - Gen 1 : early reactors (1950s-1960s)
→ often adaptations of non-power designs (ex.: UNGG)
 - Gen 2 : commercial reactors (1970s-1980s)
→ evolutions of Gen1 (PWR) + new (BWR, CANDU)
 - Gen3 : evolutions of Gen2 (1990s-)
 - Gen4 : 6 new designs (left)
- even this is a restriction! Some examples :
 - liquid plutonium (LAMPRE, 1961-1964)
 - solid-fuel reactor cooled by molten salt (Kairos, 2016-)
- and some categories are very wide! (see left for MSRs)

Reactor development

Path effects

- some aspects of a new design can be estimated **fast** :
 - **neutronics**
 - **thermalhydraulics**
- enough to obtain a “**paper reactor**” (pending confirmation)
- but some take much **longer** / add **uncertainty** :
 - material behavior: corrosion (short / **long** term), mechanical properties...
... including **under irradiation** → already need a reactor!
 - fuel fabrication... and **reprocessing**?
- ⇒ very strong incentive to follow **existing paths** :
 - graphite / ^{nat}U : **CP-1** (1942) → ... → **UNGG/Magnox** → **AGR**
 - Sodium Fast Reactor: **EBR-1** (1951) → .. → **SUPERPHENIX** → **ASTRID**
 - Pressurized Water Reactor : **S1W** (1953) → ... → **EPR / NUWARD**
- all recent French projects are grounded in **1940s/50s** technology!

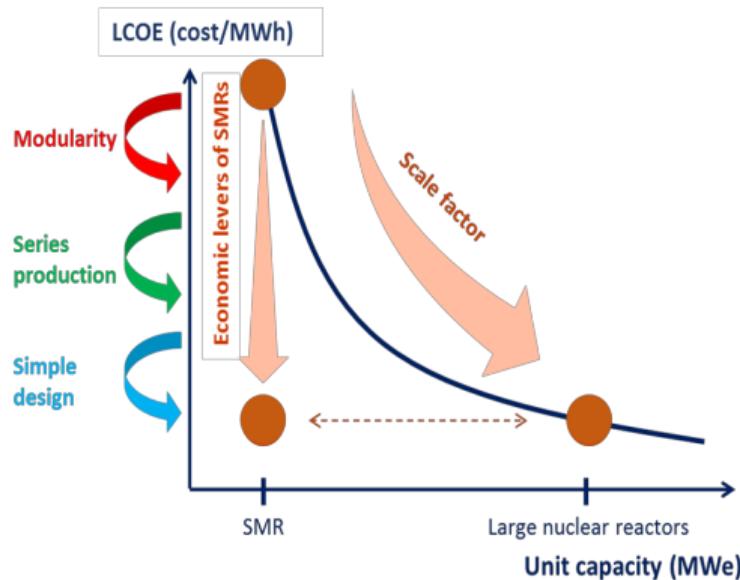
Reactor development

Tradeoffs

- on the left:

- TRIGA: "is safe even in the hands of a young graduate student" (E. Teller) → but **<3MW at 30°C**
- EPR: **4.5GW at 325°C** but quite more complex...

- on paper, **larger** reactors are always **more efficient**
→ but this comes at the cost of **extra complexity**


- some (but not all!) of this complexity comes from **safety requirements**

⇒ because these have **increased** over time, **evolutionary** designs tend to **add systems** :

N4 → EPR : 3 → **4** emergency diesels

SPX → ASTRID : 2/4 → **5** emergency cooling systems

- this does not help...

Reactor development

Tradeoffs → reactor size

- “paper” scale factor balanced with:
 - complexity → time/cost
 - lack of series/learning effect
 - more in-place fabrication → time/cost
- interest in smaller sizes (<300 MWe) :
 - with existing technology (PWR/BWR): Small Modular Reactor
 - with new technology (Gen4): Advanced Modular Reactor
- also opens new markets:
 - heat production (low/high temp)
 - industrial customers
 - small grids
 - ...

Reactor development

Phases

The development process follows a series of **phases** :

1 Conceptual design / pré-avant projet sommaire:

- formulate an initial **concept** (with only the main systems)
- perform **lab-scale experiments** where needed (<100 K€):
how long does this material last in a molten salt at 500° C?

→ at this stage, **frequent changes** are very likely!

2 Basic design / avant-projet sommaire:

- specify **all the systems** and arrange them in a **reactor building**
- perform **small-scale experiments** that are closer to reactor conditions (<1 M€):
does this material last in a loop with the actual temperature gradient?

→ at this stage, large changes are still possible, but **complete pivots** become difficult

Reactor development

Phases

The development process follows a series of **phases** :

3 Detailed design / avant projet détaillé:

- design each subsystem **separately**
- perform **large-scale** experiments to test them (<10 M€, sometimes 10-100 M€):
design/operate a 1:10 model of a molten salt with the same components

→ at this stage, overall design changes are **very difficult/costly**
(in practice → “return” to basic design)

4 Construction :

- start pouring concrete, order parts, etc.
- at this stage, design changes are **very costly!**

Reactor development

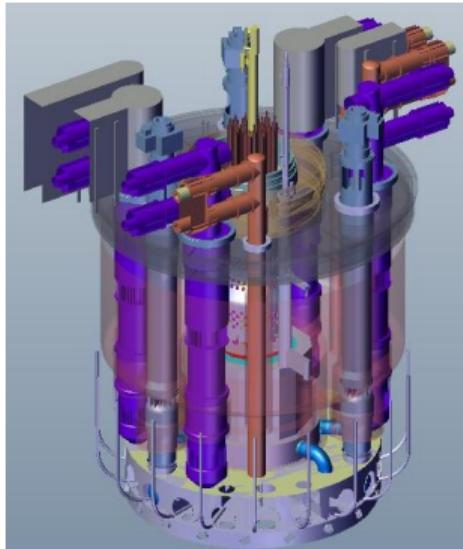
Phases / Safety

In France, these phases are coupled with interactions with the **safety authority** (ASN) :

- 1 **conceptual design** → **Safety Orientations Report** (DOrS):
in this reactor, how do I intend to manage each type of accident?
- 2 **basic design** → **Safety Options Report** (DOS):
for **each** accident, **what** systems are used and what are the consequences?
⇒ these documents can be **sent/studied** by ASN/IRSN, but are not **mandatory**!

Reactor development

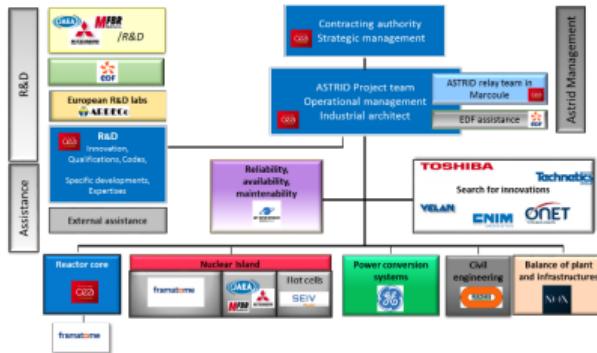
Phases / Safety


In France, these phases are coupled with interactions with the **safety authority** (ASN) :

- 3 **detailed design** → **Preliminary Safety Report (RPrS)**:
analyses of **each accident** + experiments to justify them
needed for the **request for a new nuclear installation** (Demande de DAC) sent to ASN
→ process in **three phases**:
 - initial analysis ("recevabilité"): **6 months** → questions from ASN(/IRSN)
 - after these questions are answered: **instruction** (18 months)
 - **public inquiry** (12 months)→ "Décret d'Autorisation de Crédit" → construction can start!
- 4 **during construction** → **Final Safety Report (RPS)**:
necessary for ASN to authorize **divergence**

Reactor development

Phases / Remarks

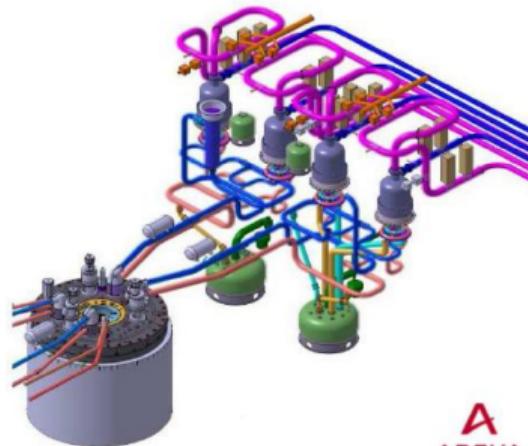
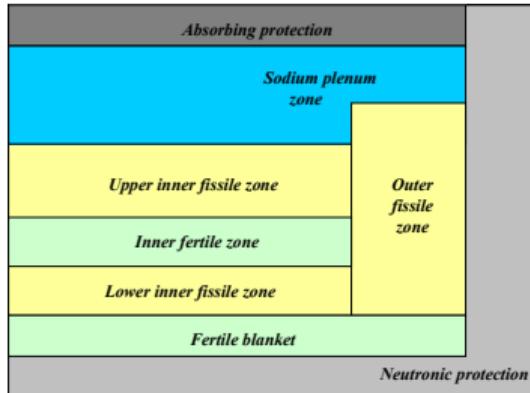

- these phases have increasing **cost** and **duration**
→ for new reactors, this is mainly driven by **experiments**
- are only **superficially** interlocked with the safety process
- the actual **criterion** for moving from one phase to the next is the risk of going **backwards**
- in particular if only part of the work is done when moving to the next phase:
EPR FA3 → **2 Mh** engineering done at first concrete (2007)
out of **5 Mh** (2007 estimate) / **20 Mh** (actual)
[Folz]

Past Experience / ASTRID

Context

- 2006 French law on **nuclear waste**:
“CEA shall build a prototype reactor for waste incineration by 2020”
⇒ restart of **sodium reactor** R&D (slowed after 1997)
- funding: “**Plan d’Investissement d’Avenir**” (2009)
- initially: reactor to demonstrate **transmutation**
→ but reoriented to a **power-production demonstrator**:
Advanced Sodium Technology Reactor for Industrial Demonstration
- somewhat **large** reactor (600 MWe / 1500 MWth)
half a **SUPERPHENIX**!

[F. Varaine, 2020]



Past Experience / ASTRID

Organization

- 2006-2009: design exploration by a **small team** at CEA
- after 2010: project team (with no **technical autonomy**) + **contracting**
 - **core** design: internally within CEA (!)
 - **reactor** design: with **Framatome**
 - + other industrial partners

⇒ consequences:

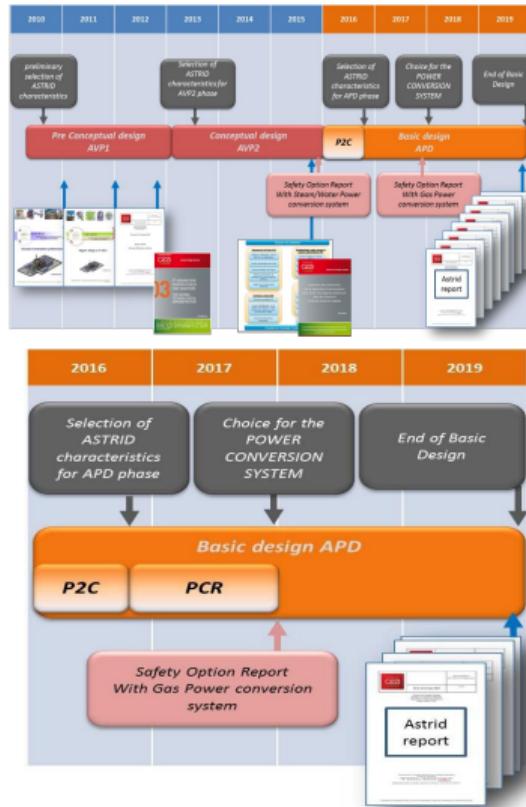
- very long **reaction times** (1 year!)
→ especially a problem for **experiments**
- settling on **conservative** design choices:
“**SUPERPHENIX (EPR)** + some innovations”

Past Experience / ASTRID

Innovations

Two main innovations, related to **safety** properties:

- 1 **core design** → eliminate the positive void coefficient:
 - objective: avoid **power excursion + core meltdown** if the sodium boils → **CFV core**
(drawback: larger / more costly core/reactor)
 - calculations (2015-16): no power excursion, but...
... meltdown still possible!

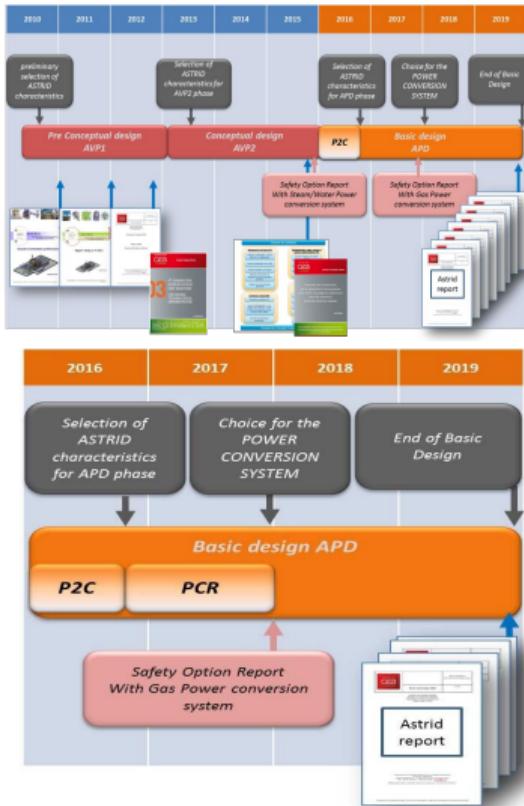

but design already fixed, so...

⇒ decision: **keep the core + add more** control rods

- 2 **power conversion system** → replace H_2O with N_2
→ to avoid **sodium-water** reactions

- need to develop a new **heat exchanger/turbine**
- lower **efficiency** ($41 \rightarrow 38\%$)
- considered as **unnecessary** by EDF

⇒ decision: **switch to N_2**



Past Experience / ASTRID

Phases

- initially → all OK:
 - conceptual design → DOrS (2012)
 - basic design → DOS (2015)
- but no funding to enter the next phase...
 - PIA → too costly
 - large reactor → large experiments!
 - EDF → not interested (too early)
- 2016-2017: holding pattern in basic design → second DOS (2017, 537p)

Past Experience / ASTRID

Phases

- 2018-19 → pivot to **smaller power** (1500 MWth → 400 MWth)
- but costs **still high** because of **conservative design**: vessel diameter 16m → 12m!
- EDF still not interested, design still expensive

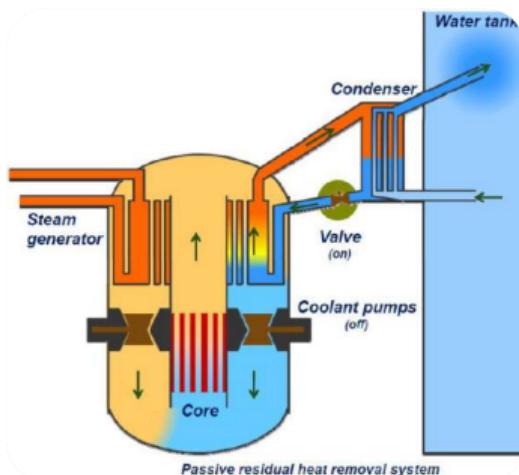
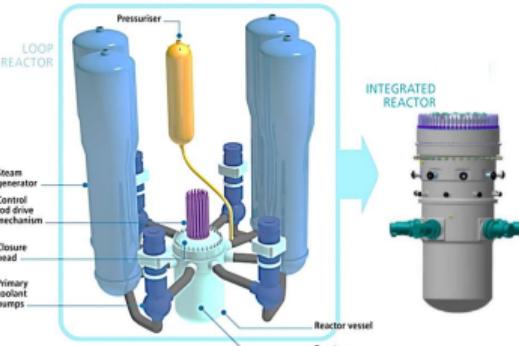
⇒ cancellation in 2019

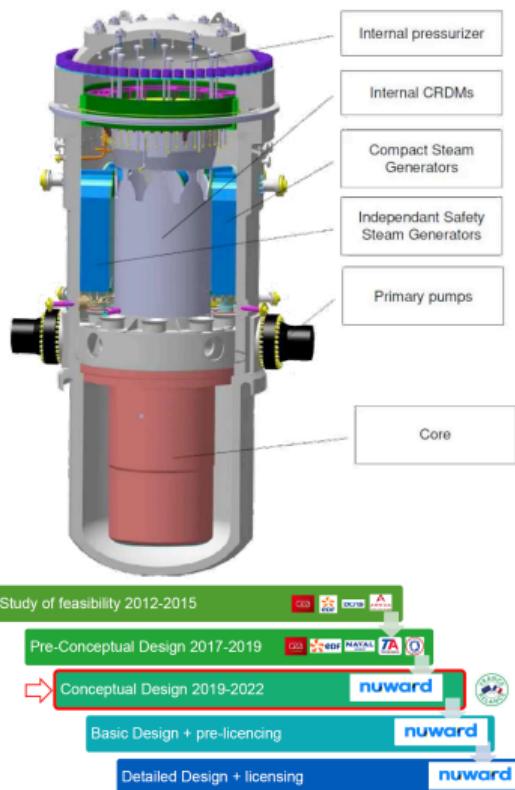
Past experience / ASTRID

Remarks

- Path effects tend to produce a “worst of both worlds” scenario:
 - most of the design is conservative → low flexibility
 - but some innovations are needed (“need to do something different”) → they need a long/costly development program
- the contracting-based project organization makes everything worse:
 - no technical autonomy in the project team → cannot make decisions without...
 - long/difficult communications
 - pivoting is very difficult (and may involve contract changes)
- ASTRID was a single project → (project) risk-taking was impossible:
“all eggs in one basket”

Past experience / NUWARD

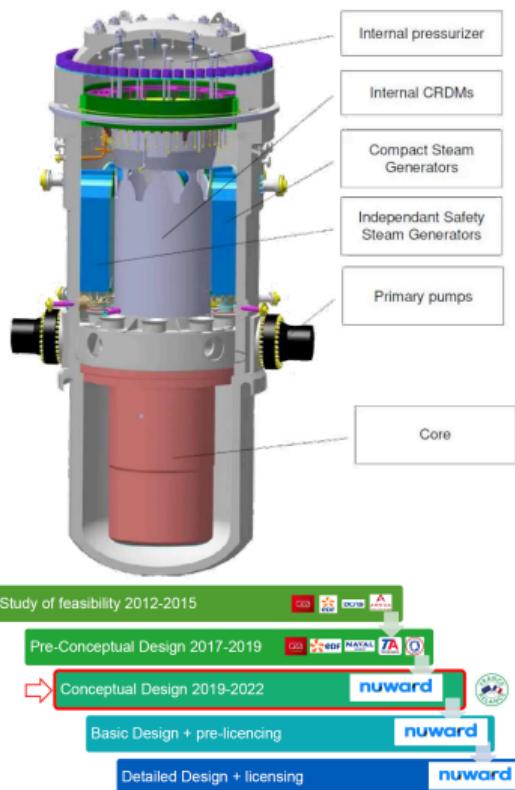


Context


- regroup all the components of a typical PWR in a single vessel
 - largest possible leak reduced from 70cm to 3cm
 - eliminate high/low pressure emergency pumps :

- remove decay heat with a **passive loop** to a large water tank

⇒ large **simplifications** at the cost of:

- low power (540 MWth / 170 MWe) : **SMR**
- some **major innovations**:
 - compact **steam generators**
 - integrated **pressurizer**
 - ...


Past experience / NUWARD

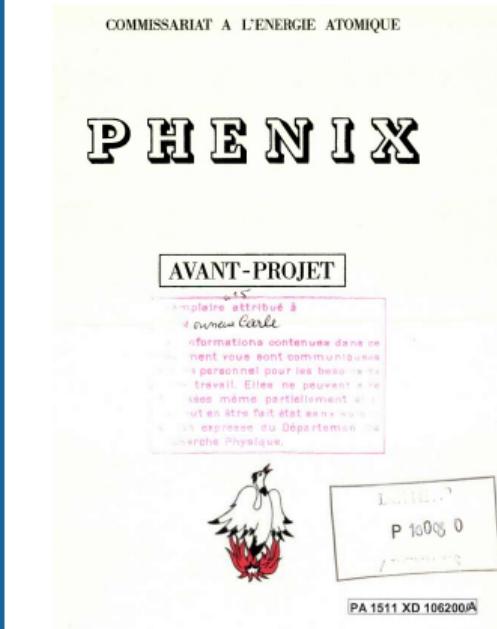
Organization

- contracting (again!) but with **more institutes**:
EDF → NUWARD SA (project team) →
CEA/TA/FRA/Naval Group/EDF

Phases

- initially slow (without EDF) :
conceptual design (2012-2019)
- then EDF interest + **France Relance/2030 support**:
basic design (2020-2023) → DOS in 2023
- start of **detailed design** in 2023...

Past experience / NUWARD


Phases

- ... but unexpected **difficulties** in 2024
 - + large time/costs expected to validate **innovations** (large risk with a 2030 construction start)

⇒ **pivot** in 07/2024 to a **traditional PWR**

Remarks

- “worst-of-both worlds” again:
apparently conservative/proven design,
but **critical/risky** innovations in practice

Past experience / PHENIX

Timeline

- Development of the first two **sodium reactors** in France:
 - **RAPSODIE** (11 → 40 MWth):
 - 1957: first studies
 - 1958: conceptual/basic design
 - 1960: detailed design
 - 1962: construction start
 - 1967: divergence
 - **PHENIX** (560 MWth / 250 MWe):
 - 196x: basic design
 - 1966: detailed design
 - 1968: construction start
 - 1973: divergence
- ⇒ much faster!

Past experience / PHENIX

Remarks

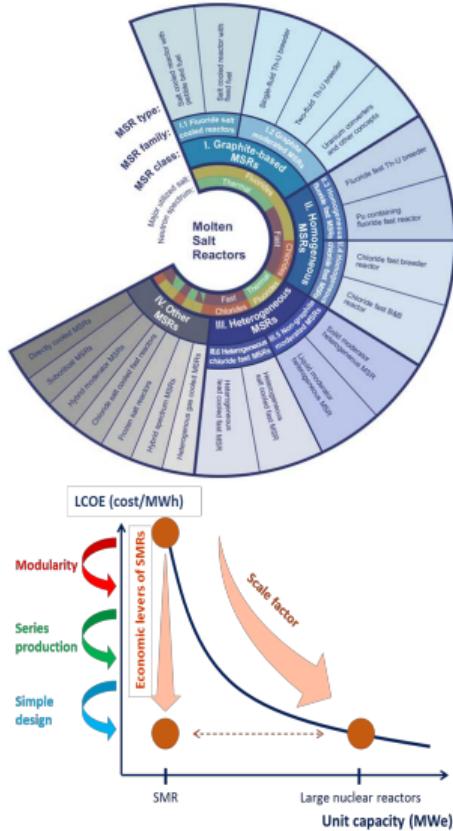
- Different **safety requirements** than today...
- but also very different **organization**:
 - design team: **small and integrated**
→ around **20 people** for the PHENIX basic design!
 - with **all participants**
for PHENIX : CEA / EDF / GAAA
- the advantages of such an organization seem obvious
→ could it be reproduced today?

Startups

Main features

especially: **deep-tech** startups (ex.: space, pharma, etc.)

- funded in **stages** : seed → Series A → Series B → Series C
- organized in **small teams** at the beginning, then grow
- need to provide a return to their investors with a **deadline** (typically 10 years)
- and... **numerous!**


Average Round Size by Stage

Made with Visible.vc ▼

Startups

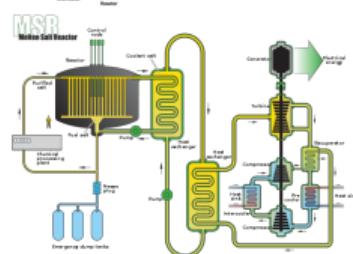
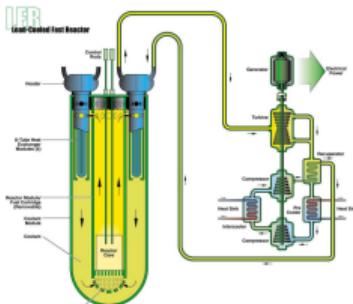
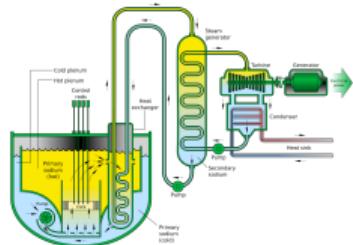
Advantages/Drawbacks

- can explore the **design space** faster than a **single project**
- but without the same **depth**
→ can only work for **simple designs**:
 - reduce **power** → **SMR/AMR**
 - reduce **complexity** : added → **intrinsic safety**
⇒ this should also reduce **costs**!
- must “listen to their customer”
- can **take risks** compared to a single project...
... and **pivot** if necessary (in the early stages)
- may not be able to follow the **complete course** of a project
→ but should be able to produce a **basic/detailed** design

Startups

Advantages/Drawbacks: Simplification

	General slowdown of the primary pumps	OS2	General slowdown of the primary pumps	OS2
	General acceleration of the primary pumps	OS2	General acceleration of the primary pumps	OS2
	Seizure or shaft failure of one primary pump	OS3	Seizure or shaft failure of one primary pump	OS3
	Connection failure between a primary pump and diagrid	OS4	Connection failure between a primary pump and diagrid	OS4
	Unprotected general slowdown of the primary pumps	PS	Unprotected general slowdown of the primary pumps	PS
Loss of function supporting	Partial blockage of a fissile sub-assembly	OS3	Partial blockage of a fissile sub-assembly	OS3
	Partial blockage of an absorbent sub-assembly	OS3	Partial blockage of an absorbent sub-assembly	OS3
	Progressive melting of a sub-assembly owing to a blockage	PS	Progressive melting of a sub-assembly owing to a blockage	PS
Defect of sub-assembly cooling	One or several secondary pump trips	OS2	One or several secondary pump trips	OS2
	Unintentional draining of secondary loops	OS3	Unintentional draining of secondary loops	OS3
	Unintentional closure of isolation valve on secondary loops	OS4	Unintentional closure of isolation valve on secondary loops	OS4
Defect of secondary and tertiary circuits cooling	Station BlackOut shorter than 2 h	OS2	Station BlackOut shorter than 2 h	OS2
	Station BlackOut longer than 2 h	OS3	Station BlackOut longer than 2 h	OS3
	Generalized under-voltage shorter than 3 days	OS4	Generalized under-voltage shorter than 3 days	OS4
	Unprotected Station BlackOut shorter than 2 h	OS4	Unprotected Station BlackOut shorter than 2 h	OS4
Reactivity variation	Unintentional rising of a control rod	OS2	Unintentional rising of a control rod	OS2
	Unintentional drop of a control rod	OS2	Unintentional drop of a control rod	OS2
	Unintentional automatic reactor shut-down	OS2	Unintentional automatic reactor shut-down	OS2
	Unintentional fast reactor shut-down	OS2	Unintentional fast reactor shut-down	OS2

Startups

France 2030

- New interest in nuclear in 2021 ("Discours de Belfort", CPN...)
- several programs in the post-Covid **France Relance** and **France 2030** :
 - R&D projects (ISAC, MOSARWASTE...)
 - **NUWARD** support
- ... and an "**Innovative Reactors**" call:
 - only **newcomers** → startups!
 - **50% public funding**
 - support in **three rounds** :
 - phase 1 : ~10x10 M€: **conceptual** design
 - phase 2 : ~4x40 M€: **basic** design
 - phase 3 : 1x300 M€: **detailed** design
 - + **public** support: CEA, CNRS,...

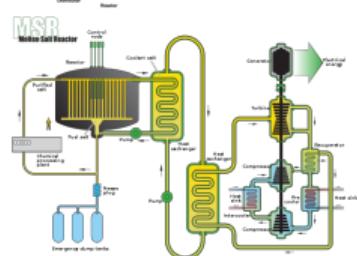
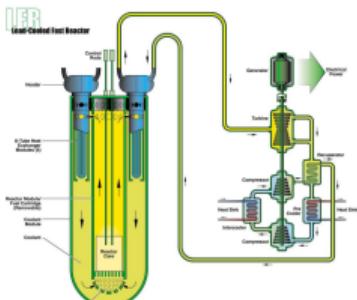
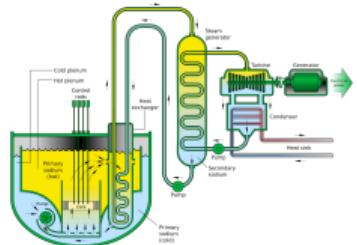
Startups

Panorama

6 fission startups in phase 1 + 2 in phase 2:

- Sodium-cooled reactors:

- HEXANA ← closest to ASTRID
- OTRERA
- Blue Capsule ← sodium, but with **graphite** blocks
⇒ moderated reactor!

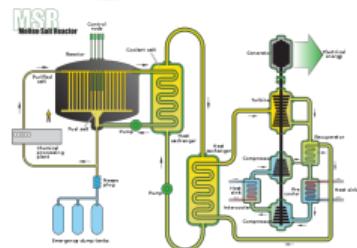
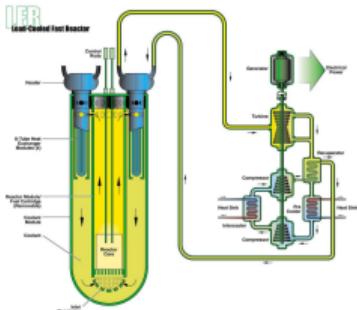
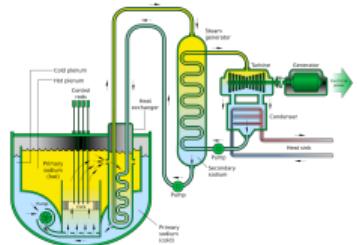



- Lead-cooled reactors:

- Newcleo

- Molten salt reactors:

- NAAREA
- Thorian
- Stellaria

- Gaz-cooled reactors: Jimmy Energy

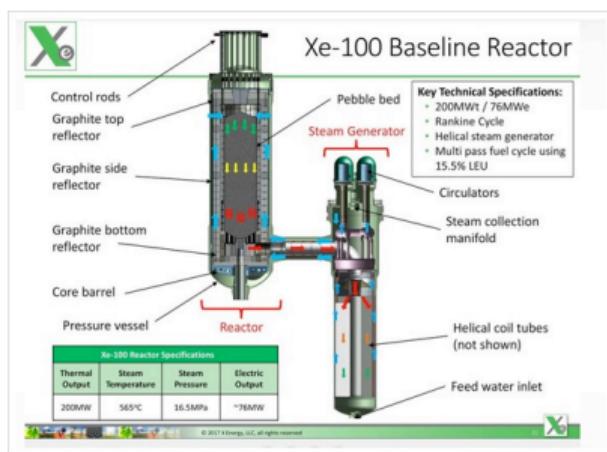




Startups

Remarks

- most startups have asked for **R&D support** from CEA:
 - materials research
 - sodium knowledge (for Na startups)
 - ...
- Stellaria and Thorizon formed a consortium with **ORANO**:
 - start work on **fuel supply**
 - work on future **reprocessing**

⇒ the smaller startups can function as small **design teams**, while leveraging the capabilities of the **large institutes**



Startups

Remarks

- from past experience, startups should be **more efficient** than the “institutes + contracting” process
- most importantly: **not all eggs are in one basket!**
⇒ how many of them will succeed?

Reactor Building

Startups

The US experience

- the **nuclear startup** phenomenon emerged in the US in the 2010s!
 - three **AMR** startups are in the **application phase**
- two **commercial** reactors:
 - **Terrapower: Natrium** (Na-cooled, 345 MWe)
 - **X-Energy: Xe-100** (gas-cooled, 4x80 MWe)
- two **experimental** reactors:
 - **Terrapower: MCRE** (chloride MSR)
 - **Kairos: Hermes** (fluoride-cooled HTR)

→ ~20% success rate among “serious” startups!

Conclusion

- Compared to the past, recent projects in **innovative reactors** have suffered because of **safety-induced** complexities, but also from **other causes**:
 - **organizational challenges**
 - “worst-of-both-worlds”: **conservative** design + a few innovations
 - “all eggs in one basket” → impossible to take **risks**
- in comparison, startups:
 - can function like the **integrated design teams** of previous projects
 - will need to find **simplicity**
 - can **pivot** until they do...
 - ... or **fail otherwise**

→ from the US experience, it is likely that at least a **few** will succeed

Conclusion

- Compared to the past, recent projects in **innovative reactors** have suffered because of **safety-induced** complexities, but also from **other causes**:
 - **organizational challenges**
 - “worst-of-both-worlds”: **conservative** design + a few innovations
 - “all eggs in one basket” → impossible to take **risks**
- in comparison, startups:
 - can function like the **integrated design teams** of previous projects
 - will need to find **simplicity**
 - can **pivot** until they do...
 - ... or **fail otherwise**

→ from the US experience, it is likely that at least a **few** will succeed