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« 2900 pages —nuclear —wind
« Transition : 2517 occurrences —solar degrowth

e Transitions : 1890
» Sufficiency : 188

o Degrowth : 26 occurrences

—sufficiency —transition
—CCS and CDR

e 3131 scénarios, « scenarios that include economic degrowth are not fully
represented, as these scenarios, were not submitted to the database »

« Energy transitions can occur faster than in the past »

«A Low-Carbon Energy Transition Needsto Occur Faster
Than Previous Transitions » (p. 369).
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Increased structuration
of activities In local practises
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« Energy transitions can occur faster than in the past »

«A Low-Carbon Energy Transition Needsto Occur Faster
Than Previous Transitions » | PCC report, 2022, p. 369
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Energy and the
English Industrial
Revolution

E. AL WRIGLEY
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Figure 4.1 Annual energy consumption per head (megajoules) in England . Water
and Wales 1561-70 to 1850-9 and in Italy 1861-70.
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Figure 1. Consommation de bois de mines en milliers de métres-cubes.

Sources : FAO, European Timber Statistics, 1913-1950, Genéve 1953 ; FAO, Forest Products Statistics, Part Il Apparent Consumption, 1950-1975, Rome, 1975 ;
J.J. MacGregor, « Timber Statistics », Journal of the Royal Statistical Society, vol. 116, n°3, 1953, p. 298-322 ; Forest Service, US Department of Agriculture,
Timber Resources for America’s Future, 1958 ; Robert Stone, « Wood products used by coal mines », Forest Products Journal, vol. 35, n°6, p. 45-52 ; Richardson,
Forestry in Communist China, Baltimore, Johns Hopkins, 1966 p. 164.
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Transition énergétique : une génealogie
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Atomic malthusians



Harrison Brown




Figure 2. Artist’s conception of an agro-industrial complex of the future, in which the encrgy of the atom is used to transform an arid
desert region inta productive farms and citics by supplying water, fertilizer, industrial chemicals, metals, ete. The usable porlion of the
carth’s surface could be inore than doubled in this way.
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Energy Production by Primary Energy Type
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Cesare Marchetti, critique des scénarios
du I1ASA
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« Don’t forget the system, the system will not forget you! »
Cesare Marchetti 1975
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« We have to think climate as a resource »
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Robert White, « Climate at the Millenium », World Climate Conference, 1979, p. 5.

William D. Nordhaus, « The Allocation of Energy Resources »,, Brookings Papers on Economic Activity,
vol. 3, 1973, p. 529-576

William Nordhaus, « Can We Control Carbon Dioxide? », IIASA Working Paper, WP-75-63, 1975, p. 34.
Alan S. Manne, « waiting for the breeder », IIASA Research Report, RR-74-5, 1974.
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FEW PESPLE DCUBT THAT THI wOALD mAS ENTEIED 4N ENERGY
TRANSITION Away FRUM JEPENTENVE UPDN FOSSIL FUELS AND TONARD Scm:
MEX OF RENTHABELE RESOURCES THAT WILL NCY POST PRIDLETHG OF Eﬁz
ACCUMULATICN.  THF QUFST!ON IS HOWN DO WE S€T FROM HERE TG THFRE
WH|LE PRESERVING TAE HEALTH OF QUR POLITICAL, ECONGMIC, AND

ENv]2ONMENTAL SUFPDHRT $¥YSTEMS. WMMAT [ WILL Dn I¥ THE REMAIHDCR

Tz [IASH STuby ZONZLUDES THAT Ta ndkz & SUCCESSFUL
TRan: I TIOR rRu~v Fu3S)L FUELS TD &M ENEHGY S5YSTEY BASED AN
FFHENASLE RESOURCES, THE MIRLD ECONDIY MUST EXPEND 175 PRODUCT;VE
PawIrRs. I MLS* LXELND Ih A_L DIMENS:ONS, BUT, MDST IMPAATANTLY,
TN THE NiW CNIWNLEDGE AN HUMAN SK|LL THA1 ENLARG: THE
FEennoLaZICAL 3235-  FO2 Suln KRhOWLEDSE ANE S<ILL, MOKE THaN
BRUTL CAPTTAL, 5 wEST INABLES SQCIETIES h THIZ AZE TO USE THE

tarE R CVYEM FEWEP RESQURCES T3 PRGIUTE MORE-

[HE [1ASH STRETEGY FOR INVENTING THAT FUTLAF RESEMALES
TAE OME [ ~AYE SLGGESTED: & STAATEGY €IRST, OF Gkajyal
THANSITIGK FROM JLZAN, HIGH CHALITY NESOURIES--NATURAL EAT LND
OIL--"G IIRTIER UNIZONYEYTIONAL FOSSIL AESQJRCES. THE $TudY a4_50
TAKES NGT:Z GF THE Cﬂg [$59€, ASCUMMENDING THAT SJCIETY
[NCORPORATE SUFFICLINT MON=9531L OPTIOHS [N THE ENEKGY SUPPLY
SYSTEM 50 AS 7C ALLOW EXPANSIDN OF THAT BASE, 1F WECESSARY, AS

THE EFFECTS OF CARBON DIOXIIE BECOME ERETTER AUANT|FJaRLE THROUGH

FJIRTHER RESCARCH-

FUELS. FORTUNATELY, THESE CONDITIONS GIVE SCTENCE AND
FNEZINEERING & LOT OF ROCM TO HANEUVER- [T APPEARS WE STILL HaVE
TIME TG GENERATE THE WEALTE AND KNOWLEDGE wE WILL NEED TC INYERT

TME TRANSITION TC A STAELE ENERGY SYS:EM.

Edward David

« Inventing the
future,

Energy and the CO2

problem »

Exxon, 1982.



OK : play the technology card!
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Box 1.2 = Era of fossil fuel growth may soon be over

The Stated Policies Scenario in this Outlook is the first WEO scenario based on prevailing
policy settings that sees global demand for each of the fossil fuels exhibit a peak or
plateau. Coal demand peaks within the next few years, natural gas demand reaches a
plateau by the end of the decade, and oil demand reaches a high point in the mid-2030s
before falling. The result is that total demand for fossil fuels declines steadily from the
mid-2020s by around 2 exajoules (EJ) (equivalent to 1 million barrels of oil equivalent per
day [mboe/d]) every year on average to 2050 (Figure 1.9).

Figure 1.9 = Fossil fuel demand in the STEPS, 1990-2050
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Total fossil fuel use sees a definitive peak for the first time in this year’s STEPS. The share
offossil fuelsin the energy mix falls to around 60% in 2050, a clear break from past frends



® Gigatons of CO,-equivalent emissions (GtCO,-eq/yr)

Limiting warming to 1.5°C and 2°C involves rapid, deep and
in most cases immediate greenhouse gas emission reductions
Net zero CO, and net zero GHG emissions can be achieved through strong reductions across all sectors

a) Net global greenhouse
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